不锈钢薄壁零件选区激光熔化制造及影响因素研究

杨永强 罗子艺* 苏旭彬 王 迪

(华南理工大学机械与汽车工程学院,广东广州 510640)

摘要 为了实现薄壁零件的快速制造,在快速成型设备 Dimetal-280 上进行了选区激光熔化(SLM)成型工艺实验研究,分析了 SLM 中不同激光功率、扫描速度、铺粉装置、离焦量和层厚对成型效果的影响,在实验中获得了优化的工艺参数,并成型了变截面的薄壁零件,零件致密度达 96.95%。在扫描电镜下观察了零件的表面及侧面,结果表明其层与层之间熔合良好;分析表明成型设备成型零件壁厚的绝对误差极限值在 20 μm 左右;薄壁零件顶部壁宽为 101.3 μm,底部壁宽为 142.0 μm,与设计值相差分别为 21.3 μm 和 22.0 μm,与极限值相吻合;拉伸测试表明,抗拉强度范围为 465~625 MPa,屈服强度范围为 390~515 MPa,延伸率范围为 23%~48%。

关键词 激光技术;选区激光熔化;薄壁零件;不锈钢

中图分类号 TN249;TF124 文献标识码 A doi: 10.3788/CJL201138.0103001

Study on Process and Effective Factors of Stainless Steel Thin-Wall Parts Manufactured by Selective Laser Melting

Yang Yongqiang Luo Ziyi Su Xubin Wang Di

(School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China)

Abstract For the rapid manufacturing of thin-wall parts, the process experiments of selective laser melting (SLM) have been carried out on Dimetal-280 system. The influence factors such as laser power, scanning speed, powder preparing setting, defocus length and powder layer thickness are experimented and analyzed, then a group of optimal process parameters have been gotten. In the experiment, a variable cross-section thin-wall part with density of 96.95% has been produced. The result shows that the metallurgical bonding layer by layer is excellent in the thin-wall part when investigated in scanning electron microscope, It is shown that the minimum absolute error in the wall thickness of manufacturing parts using the SLM equipment is about 20 μ m. The top and bottom thickness of the SLM part wall are 101.3 and 142.0 μ m, respectively, and the differences between designed and SLM part are 21.3 and 22.0 μ m, respectively, which are identical with the minimum absolute error. Tensile strength test shows that the tensile strength is $465 \sim 625$ MPa, yield strength is $390 \sim 515$ MPa, and elongation is $23\% \sim 48\%$. **Key words** laser technique; selective laser melting; thin-wall parts, stainless steel

OCIS codes 350.3390; 350.3850; 310.3915

1 引 言

薄壁金属零件具有重量轻、节约材料和结构紧 凑等特点,广泛地应用在各工业部门;同时,小型机 械也在不断发展。因此,制造薄壁金属零件的能力 越来越重要^[1,2]。迄今为止,薄壁零件或带有薄壁 结构的零件大多采用诸如车削、铸造、锻造和焊接等 传统工艺制造;近年来高速切削及电解加工在薄壁 零件加工中也取得了很大的进展^[3,4]。然而,薄壁

收稿日期: 2010-05-05; 收到修改稿日期: 2010-07-22

基金项目: 2007 粤港关键领域突破中标项目(广州市专项)(2007Z1-D6091)和 2010 年广东省教育部产学研结合重点项目(2010A090200072)资助课题。

作者简介:杨永强(1961—),男,教授,博士生导师,主要从事激光材料加工及快速成型制造等方面的研究。

E-mail: meyqyang@scut.edu.cn

* 通信联系人。E-mail: losizy@yahoo.com.cn

零件刚性较差,强度弱,在车削或锻造、焊接加工中 极容易变形,使零件的形位误差增大,不易保证零件 的加工质量^[5]。在铸造工艺中需要耗费时间和财力 加工模具,同时壁厚也受到限制,复杂结构零件难于 直接成型而不得不采用组合件^[1~5]。所以,应用别 的工艺解决这一难题就显得很有必要,本文中将 0.05~0.50 mm的厚度定义为薄壁。

激光堆积制造(LAM)技术的出现为薄壁零件的 制造提供了一条从三维模型直接生成金属零件的途 径。与高速切削及电解加工相比较,LAM 技术是采 用离散堆积的办法,避免了在母材去除材料的各种缺 点,是一种较为理想的数字化制造。刘继常等[1,2]采 用激光熔覆技术成型了壁厚最小为 0.4 mm 的金属 薄壁结构;石力开等[6] 对金属直薄壁件激光直接沉积 过程进行了有限元模拟:席明哲等[7] 对激光快速成形 金属薄壁零件的三维瞬态温度场数值进行了模拟;周 建忠等[8] 对激光直接烧结成形多层金属薄壁件的温 度场进行了有限元模拟,并获得了烧结宽度为 0.62 mm左右,堆积高度可达到 3.5 mm 的薄壁。 而近年出现的选区激光熔化(SLM)技术在制造薄 壁零件上也有很大的发展,且可成型壁厚更小的零 件。K. A. Mumtaz^[9]采用 550 W Nd: YAG 脉冲激 光成型了宽为0.49 mm,厚为 9 µm 的 Inconel 625 薄壁零件; Juergen J. Brandner 等^[10]采用 SLM 技 术制造了壁厚为 80 µm 的 1.4404 不锈钢零件。 SLM 技术采用激光为热源,激光经过聚焦后光斑直 径可以达到很小的尺寸,这为薄壁零件的制造提供 了基础,而且利用 SLM 制造的纯金属或合金零件 具有冶金结合、致密性接近 100%,且具有较高尺寸 精度和较好表面粗糙度^[11,12]。SLM 突出的优点是 能够制造具有复杂空腔结构且其他工艺无法或很困 难加工的零件^[13]。经过十几年的发展,SLM 技术 在航空航天、生物与模具等领域有着广阔的应用前 景[14~18]。目前,该快速成型技术向着直接制造零件 方向发展,应用 SLM 技术制造的零件只需简单的 抛光打磨等后处理就可直接应用[13]。

现在工业生产上要求能够制造具有微米级分辨 率、高度从数百微米到几厘米的零件^[19];而且随着 技术的发展,现代制造技术一直在寻求固有的自身 微细加工极限,探索有效实用的微细加工技术,并使 其能进行精密的零件加工。这就需要设备较好的微 加工能力,包括细微结构成型的质量以及成型微细 零件的能力。法国 ENISE 研究所、德国微工程研究 所等对 SLM 成型薄壁零件的工艺进行了较多研 究。然而现今采用 SLM 技术成型的零件依然存在 着较多的缺陷,在尺寸精度、表面质量等方面需要进 一步的研究。为了充分了解 SLM 成型薄壁零件的 工艺,必须研究工艺参数对成型的影响,为增强 SLM 微加工能力做进一步的研究。

2 实验设备及材料

实验设备使用华南理工大学与广州瑞通激光科 技有限公司联合开发的 Dimetal-280 选区激光熔化快 速成型设备。系统采用了 200 W 掺镱双包层连续式 光纤激光器,波长为 1090 nm,光束质量因子 $M \ll$ 1.2,经 $f \theta$ 透镜,可在成型平面上聚焦成 50 μ m 的光 斑。系统主要组成包括升降精度达±5 μ m 的精密铺 粉系统、气密成型室、激光发生及光路系统、振镜扫描 系统等,由工控机集成控制,通过成型控制软件以及 扫描路径规划软件,对激光参数、铺粉参数以及扫描 参数进行调节,图 1 为系统示意图。

图 1 Dimetal-280 选区激光熔化快速成型系统示意图 Fig. 1 Schematics diagram of Dimetal-280 SLM rapid prototyping system

实验采用-500 目(25 μm)气雾化 316L 不锈钢 粉,其组成成分如表 1 所示。成型所用的基板采用 Q235 钢加工的方块,尺寸为 100 mm×100 mm× 10 mm,实验前打磨平整,采用纯氮气保护。试样的 致密度为

$$p_{\rm c} = \frac{p}{p_{\rm 0}} \times 100\%$$
, (1)

式中 p_0 (7.98 g/cm³)为不锈钢的理论密度,实际密度 p 用排水法测定,采用称量精度为 0.0001 g 的 BS2245 电子天平,计算公式为

$$p = \frac{W_{\rm air} \times P_{\rm H_2O}}{W_{\rm air} - W_{\rm H_2O}},\tag{2}$$

式中 W_{H_2O} 为试样在水中的质量, W_{air} 为试样在空气中的质量, P_{H_2O} (1 g/cm³)为水的密度。用 ZEISS spectrum 表面粗糙度测量仪测量样品表面粗糙度,

测量 5 次取平均值,采用 VHX-600E 超景深三维显 微镜测量壁厚及相关尺寸。

表1 316L 不锈钢粉组成成分(质量分数,%)

Table 1 Chemical composition of 316L stainless

steel	(mass	fraction,	%)
-------	-------	-----------	----

Elements	Values
Fe	Bal
Ni	11.93%
Cr	16.7%
Mo	2.02%
Mn	0.42%
Si	0.90%
С	0.035%
Р	0.029%
S	0.032%

3 结果与分析

3.1 薄壁零件的成型

通过实验得到一组优化的加工参数,即在激光 功率 P=100 W,扫描速度 v=200 mm/s,层厚 e= 25 μm,扫描间距 s=0.06 mm,离焦量 0,并在层错 正交的扫描条件下成型了薄壁零件,成型零件及其 尺寸如图 2 所示。对零件的各项指标进行了检测, 如表 2 所示。由于将试件从基板上取下时采用了线 切割使零件部分受损,影响 Z 轴方向的尺寸,导致 试件高度与设计值相差较大。并采用 JSM-5910 扫 描电镜(SEM)对成型零件的上表面及侧面进行了 显微分析。

表 2 零件检测结果 Table 2 Measurement of the parts

	Top thickness of the	Bottom thickness of	Specimen	Surface roughness	Relative		
	SLM part $/\mu m$	the SLM part $/\mu m$	height $/\mu m$	$R_{ m a}/\mu{ m m}$	density / $\rlap{/}{0}{\prime}_{0}$		
Measured (average)	101.3	142.0	487.6	30	96.95%		
Design	80.0	120.0	500.0				
Difference	21.3	22.0	112.4				

3.2 零件显微分析

图 3(a),(b)为零件上表面 SEM 图,从图中可 以清晰看出零件薄壁及其方孔,每片薄壁和方孔的 宽度均匀。同时,从上表面观察时也可以看到很多 粉末粘附在壁上,造成薄壁厚度比设计的要偏大。 有些方孔内部、薄壁周围粘附了较多粉末制约了零 件的尺寸精度,影响了零件的质量。

由于薄壁零件的侧面壁宽只有一道或几道扫描

线的宽度,层与层之间的搭接就显得尤为重要,要避 免在成型过程中产生空隙。图 3(c),(d)是零件侧 面表面 SEM 图,层与层之间的结合清晰可见,每一 层的厚度较为均匀,层与层之间有一定的熔合,搭接 良好;同时也看到在扫描线上粘附着一些粉末颗粒, 同上表面的观察一样,这是粉末在熔化过程中对扫 描线附近的粉末具有吸附作用造成的。如果粉末中 含有较大的颗粒,那么对尺寸精度而言是非常不利 的,如表 2 中所示,零件在检测过程中壁厚超出设计 值 21.3 μm 之多。

3.3 零件尺寸分析

根据表 2 可知零件尺寸相对误差较大;而根据 实验结果,成型壁厚在一定范围时,绝对误差将处于 一个稳定值,如图 4 所示。成型壁厚在 10 mm 以内 时,尺寸绝对误差在 20 μm 左右,随着壁厚增大,绝 对误差增大至趋于稳定值;由于使用设备的性能原 因,处于薄壁状的情况下绝对误差无法减小而使得 相对误差较大,如图 5 所示。当壁厚设计值处于一 定范围时,由于单道熔宽处于一个稳定值,则成型件 的壁厚将不再变化,因此能成型的薄壁设计值无法 超越单道扫描线熔宽这个极限值;而且成型零件时 中 国 激 光

图 3 试件上表面及侧面扫描电镜图。(a),(b)零件表面;(c),(d)零件侧面 Fig. 3 SEM images of surface and lateral of part. (a),(b) surface of part; (c),(d) lateral of part

图 4 绝对误差与成型壁厚的关系

图 5 相对误差与成型壁厚的关系 Fig. 5 Relationship between relative error

and wall thickness

由于表面及侧面会粘附一些粉末颗粒影响零件尺 寸,所以在本实验条件下薄壁的绝对误差无法消除; 在壁厚较大即扫描面积增大时,由振镜引起的扫描 误差较大,所以尺寸精度会较差。要减小薄壁件成 型时的绝对误差,需要有功率更高、模式更好的激 光,能够保证精确的更薄的铺粉厚度以及精密的铺 粉单元;在本实验条件下,成型的薄壁件壁厚几乎为 自身微加工极限。

4 影响因素讨论

如前分析所述,成型的薄壁零件在尺寸方面与 设计值还有一定的差值。SLM 技术是一种集 CAD 设计、数字控制、精密机械、激光和新材料技术等学 科于一体的高新技术,影响因素众多,要合理地选择 参数及各个配套系统。薄壁零件是由单道或者几道 扫描线累积起来的,而且由于精密零件的尺寸都较 小,一点微细的变化都可能造成零件无法使用。在 众多影响因素中,激光功率、扫描速度、铺粉装置、离 焦量和层厚对薄壁零件成型有着重要影响。

4.1 激光功率的影响

在 SLM 中, 在扫描速度一定时, 若激光功率 低,则无法完全熔化扫描线的粉末, 使得粉末无法完 全熔化或处于烧结态, 使得成型零件中孔隙增多, 降 低致密度和力学性能,在成型零件时容易形成孔洞; 相反,如果功率过高,同样也不利于成型。这是因为 在高的激光功率作用下,粉末可吸收的能量增多,金 属粉末量熔化更多,容易使熔融金属向两侧流淌,导 致熔池变宽,如图6所示。使得在薄壁件成型时壁 宽精度无法保证:同时熔融金属的增多使冷却凝固 时间加长,更容易吸附熔池附近的粉末粘结在扫描 线上,在单道多层成型时粘附的粉末造成表面粗糙 且影响尺寸精度;在薄壁件的侧面分析中可以看出 零件在成型过程中仍然吸附了粉末。另一方面,大 的熔池表面积其固液界面的表面张力也相对较大, 使得熔液球化的趋势更明显。这些均不利于精密成 型,因此,在扫描速度一定的情况下,要选择合适的 激光功率。通常,在成型过程中,要将激光功率与扫 描速度的选择相互结合起来,在合适的匹配条件下 成型零件。

图 6 不同激光功率下熔池宽度与扫描速度的关系 Fig. 6 Relationship between scan speed and melt width under different laser powers

4.2 扫描速度的影响

在激光功率一定时,随着扫描速度的提高,熔池 宽度减小,可获得较为细小的熔道,如图 6 所示。但 是速度过大时,无法形成连续的扫描线,如图 7 所 示。高速度扫描时,扫描线质量较差,且产生了球化 现象。这是因为高的扫描速度下,粉末吸收的能量 下降,在扫描线上由于热积累的作用,使得有一段或 部分粉末熔化,而熔化了的金属粉末将未扫描的粉 末吸附过来团聚在一起形成小球状,造成扫描线断 裂,这就势必在薄壁件成型时造成层与层之间无法 完全融合或者出现孔隙。通过比较图 7(a),(b)也 可得出,在激光功率较高时,由提高速度引起的扫描 线断裂现象较弱。

图 7 扫描速度对单道扫描线的影响。(a) P=120 W, (b) P=90 W

Fig. 7 Effect of scanning speed on single track. (a) laser power is 120 W, (b) laser power is 90 W

4.3 铺粉系统的影响

由于薄壁零件几乎都是在单道扫描线的基础上 成型的,所以铺粉设备对成型零件的影响不可忽视。 在成型过程中,由于表面总会有一些不平整,铺粉装 置与零件屡屡有较强的摩擦,这在较大面积方块成 型时就会导致铺粉极不平整,进而导致随后的成型 表面变差,或许在几十层乃至上百层后可以恢复,即 便如此,在致密度方面已经非常差。而在薄壁件成 型时,铺粉装置与零件薄壁的碰撞不仅仅导致铺粉 变差,还有可能将成型的薄壁撞弯甚至导致整个零 件从基板上脱落,使得成型失败。如图 8 所示,在成 型的单道方框中,使用普通的铺粉装置,成型质量很 差,在将铺粉装置优化设计后,其成型的方框如图 9 所示,效果较好。

图 8 采用普通铺粉装置成型的方框 Fig. 8 Pane manufactured with ordinary powder preparing setting

图 9 采用优化铺粉装置成型的方框 Fig. 9 Pane manufactured with optimal powder preparing setting

4.4 离焦量及层厚的影响

Dimetal-280采用光纤激光器,具有优良的光束质 量,可获得极细微的聚焦光斑,理论值可达 21 µm^[20], 这为提升微加工能力提供了基础。分析认为^[21]在离焦 量为-3~+3 mm范围内,离焦量对单道熔池的宽度 影响较小;但是,尽管激光光斑直径对熔池的宽度影响 不大,实验过程中发现离焦量对熔深有显著的影响;小 的聚焦光斑明显穿透能力更强。在薄壁件成型中, 层与层之间的熔合显得极为重要,如果熔深不够,层 与层之间搭接不良,容易造成侧面不连续而出现孔 洞。而且在实验过程中发现离焦量的变化会引起激 光聚焦后能量大幅度衰减,导致无法较好地利用激 光。为保证熔深及激光能量,在成型过程中将离焦 量设置为 0。

在 SLM 成型中,层厚的选择往往受限于所使 用的粉末粒度和设备的铺粉精度。对于变截面的零 件而言,分层厚度太大则可能导致较强的台阶效应, 可能遗失相邻切片层之间的小特征结构^[22],不利于 尺寸精度的保证,而且较大的分层厚度在薄壁件的 成型时容易造成空隙。因此,为获得精密变截面薄 壁零件,分层离散时适宜采用较小的切片厚度。

5 薄壁件力学性能测试

为了验证未经后处理的薄壁件的力学性能,将 试样制成符合国标要求的力学性能测试件,图 10 为 拉伸件实物图,测试结果如图 11 和表 3 所示,抗拉 强度范围为 465~625 MPa,屈服强度范围为 390~ 515 MPa,延伸率范围为 23%~48%。根据测试结 果,与铸造件相比^[23],屈服强度显著提高;抗拉强度 增长较少,有两个测试件抗拉强度只与铸造件相当; 延伸率普遍比较低。这是因为 SLM 成型的试件金 相组织主要由柱状晶与等轴晶组成,层内、层间为冶 金结合,晶粒十分细小,组织致密,经测量的晶粒尺 寸在 1 μm 左右,与传统的铸造退火后组织有很大 区别。采用 SLM 技术成型的零件得到细晶强化, 因此,拉伸性能也有很大的提高;然而由于 SLM 制 造是分层制造技术,未经过后处理的试件层与层之 间的结合部位是脆弱的区域,这在一定程度上减弱 了试件抗拉强度,因此,在试件晶粒组织细小的情况 下,抗拉强度增长较少或只与铸造件相当;同时, SLM 是一个熔化与凝固极快的过程,且层与层之间 温度梯度很大,造成试件内应力很大,这也有可能降 低试件抗拉强度。根据霍尔-佩奇(Hall-Petch) 公式

$$\sigma_{\rm s}=\sigma_0+kd^{-1/2}\,,\qquad\qquad(3)$$

式中 σ_0 和k是常数,d为晶粒尺寸, σ_s 为屈服强度。 细晶强化可以大幅度提高屈服强度^[24],测试结果也 显示屈服强度提高了 $2\sim3$ 倍之多,而这也造成拉伸 过程塑性增加缓慢,使得延伸率普遍要比铸造件 的低。

图 10 拉伸试样 Fig.10 Tensile specimen

Table 3 Tensile test results						
	Test number	Tensile strength /MPa	Yield strength /MPa	Degree of stretching $/ \frac{1}{20}$		
Parts protoryped by SLM	1	590	505	26		
	2	465	390	23		
	3	625	515	48		
	4	475	390	24		
Casting		>480	>175	>40		

表 3 拉伸测试结果

.

6 结 论

1) 成型了一个精密的变截面网格零件,成型效 果与设计一致:在 SEM 下观察, 层与层之间熔合良 好,表面质量较好;成型设备成型零件壁厚的绝对误 差极限值在 20 μm 左右;薄壁零件顶部壁宽为 101.3 µm,底部壁宽为 142.0 µm,与设计值相差分 别为 21.3 µm 和 22.0 µm, 与极限值相吻合。 Dimetal-280 设备在薄壁零件制造方面有很好的潜 力。

2) 在成型精密薄壁零件时,需严格控制离焦 量、激光功率、扫描速度和层厚等工艺参数,以此获 得良好的单道扫描线,控制扫描线吸附粉末;采用适 合薄壁零件的铺粉系统;这是进行薄壁零件成型的 关键。

3) 经过拉伸测试,SLM 成型试件抗拉强度范围 为 465~625 MPa, 屈服强度范围为 390~515 MPa, 延 伸率范围为 23%~48%。

参 老 文 献

- 1 Liu Jichang, Li Lijun. Experimental study on fabrication of thinwall metallic features by laser cladding [J]. Chinese J. Mechanical Engineering, 2004, 40(10): 185~188 刘继常,李力钧. 激光熔覆成形金属薄壁结构的试验研究[J]. 机械工程学报,2004,40(10):185~188
- 2 Liu Jichang. Model of wall thickness of the part formed by singlepass laser cladding[J]. Materials Science & Technology, 2005, **13**(1): 99~102

刘继常. 激光单道熔覆成形的金属零件壁厚模型的研究[J]. 材 料科学与工艺,2005,13(1):99~102

3 Wang Xibin, Xie Lijing. Technical status and progress in high speed cutting [J]. China Mechanical Engineering, 2000, **11**(1-2): 190~194

王西彬, 解丽静. 超高速切削技术及其新进展[J]. 中国机械工 程,2000,11(1-2):190~194

- 4 Zhang Wei, Xu Jiawen. Study on numerically controlled electrochemical machining of thin-wall aluminium alloy integral components[J]. Electromachining & Mould, 2007, (4): 61~63 张 伟,徐家文. 铝合金薄壁整体构件的数控电解加工试验研究 [J]. 电加工与模具, 2007, (4): 61~63
- 5 Zhang Chong, Yin Dongping. Manufacturing technics of thinwall parts [J]. Electronics Process Technology, 2008, 29(1): $40 \sim 42$
 - 张 冲,殷东平.一种薄壁零件的制造工艺技术[J]. 电子工艺

技术,2008,29(1):40~42

6 Shi Likai, Gao Shiyou, Xi Mingzhe et al.. Finite element simulation for laser direct depositing processes of metallic vertical thin vallparts I. the simulation for temperature field during depositing processes[J]. Acta Metallurcica Sinica, 2006, 42(5): $449 \sim 453$

石力开,高士友,席明哲等.金属直薄壁件激光直接沉积过程的 有限元模拟 I-沉积过程中温度场的模拟[J]. 金属学报, 2006, **42**(5): 449~453

7 Xi Mingzhe, Zhang Yongzhong, Shi Likai. Numerical simulation of 3D transient temperature field in thin-wall metal parts fabricated by laser direct deposition [J]. Chinese J. Nonferrous Metals, 2003, 13(4): 887~892

席明哲,张永忠,石力开.激光快速成形金属薄壁零件的三维瞬 态温度场数值模拟[J]. 中国有色金属学报, 2003, 13(4): $887 \sim 892$

8 Zhou Jianzhong, Guo Huafeng, Xu Dapeng. Finite element simulation for the temperature field in multi-layer thin-wall metal part formed by DMLS[J]. China Mechanical Engineering, 2007, 18(21): 2618~2623

周建忠,郭华锋,徐大鹏.激光直接烧结成形多层金属薄壁件的 温度场有限元模拟[J]. 中国机械工程, 2007, 18 (21): $2618 \sim 2623$

- 9 K. A. Mumtaz, N. Hopkinson. Selective laser melting of thin wall parts using pulse shaping [J]. J. Materials Processing Technology, 2010, 210(2): 279~287
- 10 Juergen J. Brandner, Edgar Hansjosten, Eugen Anurjew. Microstructure devices generation by selective laser melting[C]. SPIE, 2007, 6459: 59~67
- 11 Wu Weihui, Yang Yongqiang, Lai Kexian. Process analysis of rapid prototyping with selective laser melting[J]. J. South China University of Technology (Natural Science Edition), 2007, 35(3): 22~27

吴伟辉,杨永强,来克娴.选区激光熔化快速成型过程分析[J]. 华南理工大学学报(自然科学版),2007,35(3):22~27

- 12 Wang Di, Yang Yongqiang, Wu Weihui. Process optimization for 316L stainless steel by fiber laser selective melting[J]. Chinese J. Lasers, 2009, 36(12): 3233~3239 王 迪,杨永强,吴伟辉.光纤激光选区熔化 316L 不锈钢工艺 优化[J]. 中国激光, 2009, 36(12): 3233~3239
- 13 J-P. Kruth, P. Mercelis, J. van Vaerenbergh et al.. Binding mechanisms in selective laser sintering and selective laser melting [J]. Rapid Prototyping Journal, 2005, 11(1): 26~36
- 14 Byeong-Don Joo, Jeong-Hwan Jang, Jae-Ho Lee et al.. Selective laser melting of Fe-Ni-Cr layer on AISI H13 tool steel [J]. Transaction Nonferrous Metals Society of China, 2009, 19(4): $921 \sim 924$
- 15 R. Morgan, C. J. Sutcliffe, W. O' Neill. Density analysis of direct metal re-melted 316L stainless steel cubic primitives [J]. J. Materials Science, 2004, 39(4): 1195~1205
- 16 R. Stamp, P. Fox, W. O' Neill et al.. The development of a scanning strategy for the manufacture of porous biomaterials by

selective laser melting [J]. J. Mater Science: Materials in Medicine, 2009, **20**(9): 1839~1848

- 17 Y. C. Cheng, Z. X. Guo, Y. H. Liu *et al.*. Characteristics of cobalt-based alloy coating on tool steel prepared by powder feeding laser cladding [J]. *Optics Laser Technology*, 2007, **39**(8): 1544~1550
- 18 Yang Yongqiang, He Xingrong, Wu Weihui et al.. Direct manufacturing of customized orthopedics surgery orienting model by selective laser melting[J]. Chinese J. Lasers, 2009, 36(9): 2460~2464

杨永强, 何兴容, 吴伟辉等.选区激光熔化直接成型个性化骨科 手术模板[J]. 中国激光, 2009, **36**(9): 2460~2464

- 19 I. Yadroitsev, I. Shishkovsky, P. Bertrand *et al.*. Manufacturing of fine-structured 3D porous filter elements by selective laser melting [J]. *Applied Surface Science*, 2009, 255(10): 5523~5527
- 20 L. Quintino, A. Costa, R. Miranda *et al.*. Welding with high power fiber laser — A preliminary study [J]. *Mater Design*, 2007, 28(4): 1231~1237
- 21 Wu Weihui, Yang Yongqiang, Wang Hongwei et al.. Research

on direct rapid manufacturing of 316L fine metal part using fiber laser[J]. Laser Technology, 2009, **33**(5): 486~489

吴伟辉,杨永强,王红卫等.光纤激光直接快速成型 316L 不锈 钢精密零件研究[J]. 激光技术,2009,**33**(5):486~489

- 22 Wu Weihui, Yang Yongqiang, Wei Guoqiang. Direct manufacturing of precision metal parts by selective laser melting [J]. Chinese J. Lasers, 2007, 34(suppl.): 175~179 吴伟辉,杨永强,卫国强.选区激光熔化快速成型制造精密金属 零件技术[J]. 中国激光, 2007, 34(suppl.): 175~179
- 23 Zhu Zhongping. Stainless Steel Manual of Chinese and Foreign Comparison [M]. Beijing: Chemical Industry Press, 2004. 90~91

朱中平. 不锈钢钢号中外对照手册[M]. 北京:化学工业出版社, 2004. 90~91

24 Lu Ke, Liu Xuedong, Hu Zhuangqi. The Hall-Petch relation in nanocrystalline materials [J]. Chinese J. Materials Research, 1994, 8(5): 385~391

卢 柯,刘学东,胡壮麒. 纳米晶体材料的 Hall-Petch 关系[J]. 材料研究学报, 1994, 8(5): 385~391